Posted on Leave a comment

Short-term weight loss and hepatic triglyceride reduction: evidence of a metabolic advantage with dietary carbohydrate restriction

URL: https://www.ncbi.nlm.nih.gov/pubmed/21367948

Journal: American Journal of Clinical Nutrition

Publication Date: 05/2011

Summary: Individuals with nonalcoholic fatty liver disease (NAFLD) have excess intrahepatic triglycerides. This is due, in part, to increased hepatic synthesis of fat from carbohydrates via lipo- genesis. Although weight loss is currently recommended to treat NAFLD, little attention has been given to dietary carbohydrate restriction. The aim of this study was to determine the effectiveness of 2 wk of dietary carbohydrate and calorie restriction at reducing hepatic triglycerides in subjects with NAFLD. Eighteen NAFLD subjects (n = 5 men and 13 women) with a mean (±SD) age of 45±12 y and a body mass index (in kg/m2) of 35±7 consumed a carbohydrate-restricted (≤20 g/d) or calorie- restricted (1200–1500 kcal/d) diet for 2 wk. Hepatic triglycerides were measured before and after intervention by magnetic resonance spectroscopy. Mean (±SD) weight loss was similar between the groups (24.0±1.5 kg in the calorie-restricted group and 24.6±1.5 kg in the carbohydrate-restricted group; P = 0.363). Liver triglycerides decreased significantly with weight loss (P < 0.001) but decreased significantly more (P = 0.008) in carbohydrate-restricted subjects (255±14%) than in calorie-restricted subjects (228±23%). Dietary fat (r = 0.643, P = 0.004), carbohydrate (r = 20.606, P = 0.008), posttreatment plasma ketones (r = 0.755, P = 0.006), and respiratory quotient (r = 20.797, P < 0.001) were related to a reduction in liver triglycerides. Plasma aspartate, but not alanine, aminotransferase decreased significantly with weight loss (P < 0.001). Two weeks of dietary intervention (≈4.3% weight loss) reduced hepatic triglycerides by ≈42% in subjects with NAFLD; however, reductions were significantly greater with dietary carbohydrate restriction than with calorie restriction. This may have been due, in part, to enhanced hepatic and whole-body oxidation

Leave a Reply

Your email address will not be published. Required fields are marked *