Diabetes

Start your free 30-day trial. Cancel anytime.

Effect of a 90 g/day low-carbohydrate diet on glycaemic control, small, dense low-density lipoprotein and carotid intima-media thickness in type 2 diabetic patients: An 18-month randomised controlled trial

URL: https://pubmed.ncbi.nlm.nih.gov/33017456/

Journal: PLoS One

Publication Date: 10/2020

Summary: This study explored the effect of a moderate (90 g/d) low-carbohydrate diet (LCD) in type 2 diabetes patients over 18 months. Ninety-two poorly controlled type 2 diabetes patients aged 20-80 years with HbA1c ≥7.5% (58 mmol/mol) in the previous three months were randomly assigned to a 90 g/d LCD r traditional diabetic diet (TDD). The primary outcomes were glycaemic control status and change in medication effect score (MES). The secondary outcomes were lipid profiles, small, dense low-density lipoprotein (sdLDL), serum creatinine, microalbuminuria and carotid intima-media thickness (IMT). A total of 85 (92.4%) patients completed 18 months of the trial. At the end of the study, the LCD and TDD group consumed 88.0±29.9 g and 151.1±29.8 g of carbohydrates, respectively (p < 0.05). The 18-month mean change from baseline was statistically significant for the HbA1c (-1.6±0.3 vs. -1.0±0.3%), 2-h glucose (-94.4±20.8 vs. -18.7±25.7 mg/dl), MES (-0.42±0.32 vs. -0.05±0.24), weight (-2.8±1.8 vs. -0.7±0.7 kg), waist circumference (-5.7±2.7 vs. -1.9±1.4 cm), hip circumference (-6.1±1.8 vs. -2.9±1.7 cm) and blood pressure (-8.3±4.6/-5.0±3 vs. 1.6±0.5/2.5±1.6 mmHg) between the LCD and TDD groups (p<0.05). The 18-month mean change from baseline was not significantly different in lipid profiles, sdLDL, serum creatinine, microalbuminuria, alanine aminotransferase (ALT) and carotid IMT between the groups. A moderate (90 g/d) LCD showed better glycaemic control with decreasing MES, lowering blood pressure, decreasing weight, waist and hip circumference without adverse effects on lipid profiles, sdLDL, serum creatinine, microalbuminuria, ALT and carotid IMT than TDD for type 2 diabetic patients.

 

The effect of a low-carbohydrate, ketogenic diet versus a low-glycemic index diet on glycemic control in type 2 diabetes mellitus

URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2633336/

Journal: Nutrition and Metabolism

Publication Date: 12/2008

Summary: Dietary carbohydrate is the major determinant of postprandial glucose levels, and several clinical studies have shown that low-carbohydrate diets improve glycemic control. In this study, we tested the hypothesis that a diet lower in carbohydrate would lead to greater improvement in glycemic control over a 24-week period in patients with obesity and type 2 diabetes mellitus. Eighty-four community volunteers with obesity and type 2 diabetes were randomized to either a low-carbohydrate, ketogenic diet (<20 g of carbohydrate daily; LCKD) or a low-glycemic, reduced-calorie diet (500 kcal/day deficit from weight maintenance diet; LGID). Both groups received group meetings, nutritional supplementation, and an exercise recommendation. The main outcome was glycemic control, measured by hemoglobin A1c. Forty-nine (58.3%) participants completed the study. Both interventions led to improvements in hemoglobin A1c, fasting glucose, fasting insulin, and weight loss. The LCKD group had greater improvements in hemoglobin A1c (-1.5% vs. -0.5%, p = 0.03), body weight (-11.1 kg vs. -6.9 kg, p = 0.008), and high density lipoprotein cholesterol (+5.6 mg/dL vs. 0 mg/dL, p < 0.001) compared to the LGID group. Diabetes medications were reduced or eliminated in 95.2% of LCKD vs. 62% of LGID participants (p < 0.01). Dietary modification led to improvements in glycemic control and medication reduction/elimination in motivated volunteers with type 2 diabetes. The diet lower in carbohydrate led to greater improvements in glycemic control, and more frequent medication reduction/elimination than the low glycemic index diet. Lifestyle modification using low carbohydrate interventions is effective for improving and reversing type 2 diabetes.

Carbohydrate restriction as the default treatment for type 2 diabetes and metabolic syndrome

URL: https://www.tandfonline.com/doi/abs/10.1080/14017430802014838?journalCode=icdv20

Journal: Scandinavian Cardiovascular Journal

Publication Date: 02/2008

Summary: Dietary carbohydrate restriction in the treatment of diabetes and metabolic syndrome is based on an underlying principle of control of insulin secretion and the theory that insulin resistance is a response to chronic hyperglycemia and hyperinsulinemia. As such, the theory is intuitive and has substantial experimental support. It has generally been opposed by health agencies because of concern that carbohydrate will be replaced by fat, particularly saturated fat, thereby increasing the risk of cardiovascular disease as dictated by the so-called diet-heart hypothesis. Here we summarize recent data showing that, in fact, substitution of fat for carbohydrate generally improves cardiovascular risk factors. Removing the barrier of concern about dietary fat makes carbohydrate restriction a reasonable, if not the preferred method for treating type 2 diabetes and metabolic syndrome. We emphasize the ability of low carbohydrate diets to improve glycemic control, hemoglobin A1C and to reduce medication. We review evidence that such diets are effective even in the absence of weight loss.

Effect of low-calorie versus low-carbohydrate ketogenic diet in type 2 diabetes

URL: https://www.sciencedirect.com/science/article/abs/pii/S0899900712000731?via%3Dihub

Journal: Nutrition

Publication Date: 10/2012

Summary: Effective diabetic management requires reasonable weight control. Previous studies from our laboratory have shown the beneficial effects of a low-carbohydrate ketogenic diet (LCKD) in patients with type 2 diabetes after its long term administration. Furthermore, it favorably alters the cardiac risk factors even in hyperlipidemic obese subjects. These studies have indicated that, in addition to decreasing body weight and improving glycemia, LCKD can be effective in decreasing antidiabetic medication dosage. Similar to the LCKD, the conventional low-calorie, high nutritional value diet is also used for weight loss. The purpose of this study was to understand the beneficial effects of LCKD compared with the low-calorie diet (LCD) in improving glycemia. Three hundred and sixty-three overweight and obese participants were recruited from the Al-Shaab Clinic for a 24-wk diet intervention trial; 102 of them had type 2 diabetes. The participants were advised to choose LCD or LDKD, depending on their preference. Body weight, body mass index, changes in waist circumference, blood glucose level, changes in hemoglobin and glycosylated hemoglobin, total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, triglycerides, uric acid, urea and creatinine were determined before and at 4, 8, 12, 16, 20, and 24 wk after the administration of the LCD or LCKD. The initial dose of some antidiabetic medications was decreased to half and some were discontinued at the beginning of the dietary program in the LCKD group. Dietary counseling and further medication adjustment were done on a biweekly basis. The LCD and LCKD had beneficial effects on all the parameters examined. Interestingly, these changes were more significant in subjects who were on the LCKD as compared with those on the LCD. Changes in the level of creatinine were not statistically significant. This study shows the beneficial effects of a ketogenic diet over the conventional LCD in obese diabetic subjects. The ketogenic diet appears to improve glycemic control. Therefore, diabetic patients on a ketogenic diet should be under strict medical supervision because the LCKD can significantly lower blood glucose levels.

Improvements in Glucose Metabolism and Insulin Sensitivity with a Low-Carbohydrate Diet in Obese Patients with Type 2 Diabetes

URL: https://www.ncbi.nlm.nih.gov/pubmed/24015695

Journal: Journal of the American College of Nutrition

Publication Date: 04/2013

Summary: The optimal diet for weight loss in type 2 diabetes remains controversial. This study examined a low-carbohydrate, high-fat diet with detailed physiological assessments of insulin sensitivity, glycemic control, and risk factors for cardiovascular disease. Fourteen obese patients (body mass index [BMI] 40.6 ± 4.9 kg/m2) with type 2 diabetes were recruited for an “Atkins”-type low-carbohydrate diet. Measurements were made at 0, 12, and 24 weeks of weight, insulin sensitivity, HbA1c, lipids, and blood pressure. Twelve completers lost a mean of 9.7 ± 1.8 kg over 24 weeks attributable to a major reduction in carbohydrates and resultant reduction in total energy intake. Glycemic control significantly improved (HbA1c −1.1 ± 0.25%) with reductions in hypoglycemic medication. Fasting glucose, homeostasis model assessment (HOMA), and area under the curve (AUC) glucose (intravenous glucose tolerance test [IVGTT]) were significantly reduced by week 12 (p < 0.05). There were nonsignificant improvements in insulin sensitivity (SI) at week 12 ( p = 0.19) and week 24 ( p = 0.31). Systolic blood pressure was reduced (mean −10.0 mmHg between weeks 0 and 24, p = 0.13). Mean high-density lipoprotein (HDL), low-density lipoprotein (LDL), and total cholesterol all increased. The ratio of total: HDL cholesterol and triglycerides was reduced. A low-carbohydrate diet was well tolerated and achieved weight loss over 24 weeks in subjects with diabetes. Glycemic control improved with a reduction in requirements for hypoglycemic agents.

Dietary carbohydrate restriction as the first approach in diabetes management: Critical review and evidence base

URL: https://www.sciencedirect.com/science/article/pii/S0899900714003323?via%3Dihub

Journal: Nutrition

Publication Date: 01/2015

Summary: The inability of current recommendations to control the epidemic of diabetes, the specific failure of the prevailing low-fat diets to improve obesity, cardiovascular risk, or general health and the persistent reports of some serious side effects of commonly prescribed diabetic medications, in combination with the continued success of low-carbohydrate diets in the treatment of diabetes and metabolic syndromewithout significant side effects, point to the need for a reappraisal of dietary guidelines. The benefits of carbohydrate restriction in diabetes are immediate and well documented. Concerns about the efficacy and safety are long term and conjectural rather than data driven. Dietary carbohydrate restriction reliably reduces high blood glucose, does not require weight loss (although is still best for weight loss), and leads to the reduction or elimination of medication. It has never shown side effects comparable with those seen in many drugs. Here we present 12 points of evidence supporting the use of low-carbohydrate diets as the first approach to treating type 2 diabetes and as the most effective adjunct to pharmacology in type 1. They represent the best-documented, least controversial results. The insistence on long-term randomized controlled trials as the only kind of data that will be accepted is without precedent in science. The seriousness of diabetes requires that we evaluate all of the evidence that is available. The 12 points are sufficiently compelling that we feel that the burden of proof rests with those who are opposed.

Implementing a low carbohydrate, ketogenic diet to manage type 2 diabetes mellitus

URL: https://www.ncbi.nlm.nih.gov/pubmed/30289048

Journal: Expert Review of Endocrinology and Metabolism

Publication Date: 09/2018

Summary: Type 2 diabetes mellitus (T2DM) has reached epidemic proportions in the modern world. For individuals affected by obesity-related T2DM, clinical studies have shown that carbohydrate restriction and weight loss can improve hyperglycemia, obesity and T2DM. Reducing carbohydrate intake to a certain level, typically below 50 grams per day, leads to increased ketogenesis in order to provide fuel for the body. Such low- carbohydrate, ketogenic diets were employed to treat obesity and diabetes in the 19th and early 20th centuries. Recent clinical research has reinvigorated the use of the ketogenic diet for individuals with obesity and diabetes. Although characterized by chronic hyperglycemia, the underlying cause of T2DM is hyperinsulinemia and insulin resistance, typically as a result of increased energy intake leading to obesity. The ketogenic diet substantially reduces the glycemic response that results from dietary carbohydrate as well as improves the underlying insulin resistance. This review combines a literature search of the published science and practical guidance based on clinical experience. While the current treatment of T2DM emphasizes drug treatment and a higher carbohydrate diet, the ketogenic diet is an effective alternative that relies less on medication, and may even be a preferable option when medications are not available.

Effectiveness and Safety of a Novel Care Model for the Management of Type 2 Diabetes at 1 Year: An Open-Label, Non-Randomized, Controlled Study

URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6104272/

Journal: Diabetes Therapy

Publication Date: 02/2018

Summary: Treatments for type 2 diabetes (T2D) have improved, yet T2D and being overweight are still significant public health concerns. Blood sugar in patients with T2D can improve quickly when patients eat significantly fewer dietary carbohydrates. However, this demands careful medicine management by doctors, and patients need support and frequent contact with health providers to sustain this way of living. The purpose of this study was to evaluate if a new care model with very low dietary carbohydrate intake and continuous supervision by a health coach and doctor could safely lower HbA1c, weight and need for medicines after 1 year in adults with T2D. 262 adults with T2D volunteered to participate in this continuous care intervention (CCI) along with 87 adults with T2D receiving usual care (UC) from their doctors and diabetes education program. After 1 year, patients in the CCI, on average, lowered HbA1c from 7.6 to 6.3%, lost 12% of their body weight, and reduced diabetes medicine use. 94% of patients who were prescribed insulin reduced or stopped their insulin use, and sulfonylureas were eliminated in all patients. Participants in the UC group had no changes to HbA1c, weight or diabetes medicine use over the year. These changes in CCI participants happened safely while dyslipidemia and markers of inflammation and liver function improved. This suggests the novel care model studied here using dietary carbohydrate restriction and continuous remote care can safely support adults with T2D to lower HbA1c, weight, and medicine use.

Cardiovascular disease risk factor responses to a type 2 diabetes care model including nutritional ketosis induced by sustained carbohydrate restriction at 1 year: an open label, non-randomized, controlled study

URL: https://cardiab.biomedcentral.com/track/pdf/10.1186/s12933-018-0698-8

Journal: Cardiovascular Diabetology

Publication Date: 05/2018

Summary: Cardiovascular disease (CVD) is a leading cause of death among adults with type 2 diabetes mellitus (T2D). We recently reported that glycemic control in patients with T2D can be significantly improved through a con- tinuous care intervention (CCI) including nutritional ketosis. The purpose of this study was to examine CVD risk factors in this cohort. We investigated CVD risk factors in patients with T2D who participated in a 1 year open label, non-rand- omized, controlled study. The CCI group (n = 262) received treatment from a health coach and medical provider. A usual care (UC) group (n = 87) was independently recruited to track customary T2D progression. Circulating biomark- ers of cholesterol metabolism and inflammation, blood pressure (BP), carotid intima media thickness (cIMT), multi-fac- torial risk scores and medication use were examined. A significance level of P < 0.0019 ensured two-tailed significance at the 5% level when Bonferroni adjusted for multiple comparisons. The CCI group consisted of 262 participants (baseline mean (SD): age 54 (8) year, BMI 40.4 (8.8) kg m−2). Intention-to-treat analysis (% change) revealed the following at 1-year: total LDL-particles (LDL-P) (− 4.9%, P = 0.02), small LDL-P (− 20.8%, P = 1.2 × 10−12), LDL-P size (+ 1.1%, P = 6.0 × 10−10), ApoB (− 1.6%, P = 0.37), ApoA1 (+ 9.8%, P < 10−16), ApoB/ApoA1 ratio (− 9.5%, P = 1.9 × 10−7), triglyceride/HDL-C ratio (− 29.1%, P < 10−16), large VLDL-P (− 38.9%, P = 4.2 × 10−15), and LDL-C (+ 9.9%, P = 4.9 × 10−5). Additional effects were reductions in blood pressure, high sensitivity C-reactive protein, and white blood cell count (all P < 1 × 10−7) while cIMT was unchanged. The 10-year atherosclerotic cardiovascular disease (ASCVD) risk score decreased − 11.9% (P = 4.9 × 10−5). Antihypertensive medication use was discontinued in 11.4% of CCI participants (P = 5.3 × 10−5). The UC group of 87 participants [base- line mean (SD): age 52 (10) year, BMI 36.7 (7.2) kg m−2] showed no significant changes. After adjusting for baseline differences when comparing CCI and UC groups, significant improvements for the CCI group included small LDL-P, ApoA1, triglyceride/HDL-C ratio, HDL-C, hsCRP, and LP-IR score in addition to other biomarkers that were previously reported. The CCI group showed a greater rise in LDL-C.

Outcomes of a Digitally Delivered Low-Carbohydrate Type 2 Diabetes Self-Management Program: 1-Year Results of a Single-Arm Longitudinal Study

URL: https://diabetes.jmir.org/2018/3/e12/

Journal: JMIR Diabetes

Publication Date: 03/2018

Summary: Type 2 diabetes mellitus has serious health consequences, including blindness, amputation, stroke, and dementia, and its annual global costs are more than US $800 billion. Although typically considered a progressive, nonreversible disease, some researchers and clinicians now argue that type 2 diabetes may be effectively treated with a carbohydrate-reduced diet. Our objective was to evaluate the 1-year outcomes of the digitally delivered Low-Carb Program, a nutritionally focused, 10-session educational intervention for glycemic control and weight loss for adults with type 2 diabetes. The program reinforces carbohydrate restriction using behavioral techniques including goal setting, peer support, and behavioral self-monitoring. The study used a quasi-experimental research design comprised of an open-label, single-arm, pre-post intervention using a sample of convenience. From adults with type 2 diabetes who had joined the program and had a complete baseline dataset, we randomly selected participants to be followed for 1 year (N=1000; mean age 56.1, SD 15.7 years; 59.30% (593/1000) women; mean glycated hemoglobin A1c (HbA1c) 7.8%, SD 2.1%; mean body weight 89.6 kg, SD 23.1 kg; taking mean 1.2, SD 1.01 diabetes medications). Of the 1000 study participants, 708 (70.80%) individuals reported outcomes at 12 months, 672 (67.20%) completed at least 40% of the lessons, and 528 (52.80%) completed all lessons of the program. Of the 743 participants with a starting HbA1c at or above the type 2 diabetes threshold of 6.5%, 195 (26.2%) reduced their HbA1c to below the threshold while taking no glucose-lowering medications or just metformin. Of the participants who were taking at least one hypoglycemic medication at baseline, 40.4% (289/714) reduced one or more of these medications. Almost half (46.40%, 464/1000) of all participants lost at least 5% of their body weight. Overall, glycemic control and weight loss improved, especially for participants who completed all 10 modules of the program. For example, participants with elevated baseline HbA1c (≥7.5%) who engaged with all 10 weekly modules reduced their HbA1c from 9.2% to 7.1% (P<.001) and lost an average of 6.9% of their body weight (P<.001). Especially for participants who fully engage, an online program that teaches a carbohydrate-reduced diet to adults with type 2 diabetes can be effective for glycemic control, weight loss, and reducing hypoglycemic medications.

JOIN the COMMUNITY

Live Q&A with experts, social meetings, exclusive discounts, workout challenges, and much more…

Start your free 30-day trial. Cancel anytime.